Nasa/Ames Helicopter
Rotor Blade Telemetry System

256 channels, high bandwidth, high resolution
NASA/Ames helicopter rotor blade telemetry system
(256 channels, high bandwidth, high resolution)

Industry: Aerospace, Power

Product: AT-7400 (see AT-7600 for new designs)

Parameters measured: Dynamic Pressure (Bridge-based sensors)

This application note discusses the Accumetrics AT-7400 digital telemetry system used for aerodynamic research at NASA Ames Research Center in California. The system was developed to measure dynamic rotor blade surface pressures using silicon diaphragm transducers on a full-scale UH-60 Black Hawk helicopter model.

Overview:

The AT-7400 system was developed for a Rotor Mounted Data Acquisition and Transmission System (RMDATS) to collect wind tunnel measurements at the NASA’s National Full-Scale Aerodynamics Complex (NFAC). This data will lead to improved rotorcraft control techniques. The system is based on the proven technology of Accumetrics’ AT-7000 Series Multi-channel Digital Telemetry System, but extends its wireless measurement capabilities with new AT-7400 architecture to meet NASA’s present day needs, including:

- Dependable retrieval of high bandwidth, high resolution, and high accuracy dynamic rotor pressure sensor data from piezoresistive or other bridge type sensors.
- Selectable rotor azimuth (angle)-based or time-based sampling.
- Continuous simultaneous sampling of either 2048 samples per revolution on all 256 channels (if azimuth-based), or 10000 samples per second on each channel (if time-based).
- Flexible gain and filter frequency settings.
- Auto-balancing of transducer bridge
- PC monitoring and control of the system configuration, with post-process analysis.

Details:

The AT-7400 system consists of three subsystems:

1. The Rotating Subsystem (signal conditioning and digitizing)
2. The Transmission Subsystem (data and power coupling), and
3. The Ground Subsystem (data recovery, monitoring and analysis)

The Rotating Subsystem mounts on the top of the helicopter rotor hub and continuously conditions and digitizes the output from 256 piezoresistive pressure sensors. Signal
conditioning includes shunt calibration and auto-balancing, tenth order linear-phase anti-alias filters, and simultaneously sampled 16 bit digitizing. Data is combined into sixteen digital data streams each representing sixteen of the sensors along with associated status information. These streams are transmitted off the rotor by the Transmission Subsystem.

The Transmission Subsystem, located near the bottom of the helicopter model, includes a capacitive data coupler and mechanical sliprings (later system developments have replaced the need for sliprings; see AT-7600 for new designs). The data coupler provides a proven means of transmitting multiple streams of high speed digital sensor data off the rotor as well as the transmission to the rotor of azimuth information from an optical encoder. The sliprings are used to transmit power to the rotor and to handle low speed digital communications for control and monitoring functions.

The Ground Subsystem recovers the data transmitted from the rotor and provides monitoring and analysis capabilities. This subsystem includes sixteen receivers that recover each of the sixteen data streams. All of this data is communicated from the receivers via Ethernet to a quad-core-processor-based PC that can display system status and continuously process the data with a composite throughput of almost 60 Mbps. The PC can acquire and archive all of this data, provide real time monitoring and calibration, as well as provide FFT analysis and other post processing functions.

Summary:

The AT-7400 has an advanced set of capabilities for wireless acquisition of rotary sensor data. It provides an extensive amount of data collection capacity in a compact robust package that is capable of high centrifugal loads and severe environments. This all-digital system can collect and concentrate all data in real time in a single PC, providing impressive monitoring capabilities.

Accumetrics Associates supplies advanced digital rotor telemetry equipment to manufacturers and users of rotating machinery throughout the world. By adapting advanced aerospace technology to rotating machines, Accumetrics has become a worldwide technological leader and has established alliances with leading manufacturers of motors, generators, and turbomachinery. Accumetrics’ product offerings range from highly sophisticated digital telemetry systems with hundreds of channels to simple, low-cost devices that monitor and protect rotor components.
4 channel Dynamic Acquisition Module

16 channels of Dynamic Acquisition Modules

16 channel Data Acquisition Segment (DAS)

RMDATS assembly (16 DAS segments; 256 dynamic channels)

Receiver module: data stream input/ output

Receiver Chassis (one of two eight channel units)
PC software—controls and data display

Helicopter model; RMDATS telemetry installs on top of rotor hub
What are divisions of PCB Piezotronics?

PCB Piezotronics, a member of the PCB Group families of companies, has five major divisions, all of which offer targeted sensor technologies. These divisions are supported by an active outside direct sales force of Field Application Engineers, as well as international direct sales offices throughout the world. Individual PCB Piezotronics divisions, locations and their primary product specialties include:

- **Depew, NY, USA** - www.pcb.com – Piezoelectric, ICP®, piezoresistive & capacitive pressure, acoustic, force, torque, load, strain, shock & vibration sensors.

- **Depew, NY, USA** - www.pcb.com/aerospace – Sensors & Instrumentation for aerospace & defense applications, including air and spacecraft testing.

- **Novi, MI, USA** - www.pcb.com/auto – Sensors & Instrumentation for automotive testing, including modal analysis, NVH; component durability; powertrain testing; vehicle dynamics; safety and regulatory testing.

- **Depew, NY, USA** - www.imi-sensors.com – Industrial vibration sensors, bearing fault detectors, mechanical vibration switches, panel meters, cables & accessories for predictive maintenance and equipment protection.

- **Depew, NY & Provo, UT, USA** - www.pcb.com/larsondavis.com – Precision microphones, sound level meters, noise dosimeters, audiometric calibration systems.

- **Depew, NY, USA** - www.pcb.com/larsondavis.com – Precision microphones, sound level meters, noise dosimeters, audiometric calibration systems.

- **San Clemente, CA, USA** - www.pcb.com/auto – Sensors & Instrumentation for aerospace & defense applications, including air and spacecraft testing.

- **San Clemente, CA, USA** - www.pcb.com/LoadAndTorque – Designs and manufactures high quality, precision load cells, wheel force transducers, torque transducers, telemetry systems, and fastener torque-tension test systems.

- **Cincinnati, OH, USA** - www.modalshop.com – Global leader in dynamic calibration offering a complete line of automated calibration systems and recalibration services to support dynamic vibration, pressure and force sensors in applications such as: national standards, commercial labs, government/military research, consultancies, and industrial/plant floor operations.

- **Rochester, NY, USA** - www.sti-tech.com – Mechanical engineering consulting firm specializing in finite element analysis, advanced analytical techniques, experimentation, technology development, and design optimization for turbo machinery, industrial machine systems & mechanical structures.